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Introduction

This document is the final report of research project entitled “Wavelet Representations for Digital
Mammography,” sponsored by the Breast Cancer Research Program of the Department of Defense U.S. Army
Medical Research and Material Command. It describes experimental methods, assumptions, procedures and
results of Phases IV and V of the Statement of Work, as revised July 1997. Accomplishments relative to
completion of Phase IV , “Visualization Requirements for Evaluation Studies” and Phase V “Perform a
Retrospective Study on Existing Local and National Mammography Databases,” are summarized below.

EXECUTIVE SUMMARY

In the final Phases of this project, we carried out a receiver operating characteristics (ROC) study focusing on
dyadic wavelets for enhancement of mammographic features in digitized mammograms. The enhancement
protocol was based on multiscale expansions and non-linear enhancement functions described previously in our
annual reports. Specifically, in this case dyadic spline wavelet functions were used together with a sigmoidal
non-linear enhancement function. In this final phase, we designed a prototype test bed interface and performed a
ROC study with three radiologists specialized in mammography. Data was obtained from the national
mammography database of digitized radiographs from the University of South Florida.

Susan Smith, M.D. along with three additional radiologists specializing in mammography, of the Breast
Imaging Center at Presbyterian Hospital participated in the preliminary ROC study described below. All three
mammographers participating in this study had a previous background in CAD systems evaluations, metrics for
image quality [9] and ROC studies.

1. Selection of Cases

To measure the benefits of diagnosing digitized mammograms with enhancement through multiscale
expansions, this study focused on dense mammograms, i.e. mammograms of density 3 and 4, which are the
most difficult cases in screening. In general, the enhancement protocol aimed at improving the detection and
localization of mammographic features, such as microcalcifications, masses, and spicular lesions without
introducing “false-positives”.

To compare the performance of radiologists with and without using the enhancement tool, two groups of 30
cases each were presented. Each group contained 15 cases of cancerous and 15 cases of normal mammograms.
As mentioned above, a national mammography database of the University of South Florida provided “ground
truth” (mostly through biopsy) for the selected cases. The selection was carried out carefully under the guidance
of Dr. Smith, in order to find challenging cases of the same difficulty for each group. Images showing metal
markers (“bibis™) to indicate suspicious regions of breast tissue were avoided as well as obvious malignancies.

2. Display Setup and Software

Images from the mammography database were digitized from film at the resolutions of 40 to 50 pm. Image
widths vary between 2000 and 3000 pixels, and image heights from 4000 to 5900 pixels. Depending on the
scanner utilized for digitization the contrast resolution was either 12 bits or 16 bits per pixel resulting in large
amounts of data. The files were stored in RAW binary format.

The graphical user interface (GUI) developed for this study was written in Visual C++ 6.0, whereas the code for
the wavelet expansion and image reconstruction was written in native “C” to speed performance. To handle the
large amounts of data and to provide the diagnosing radiologist with as much information as possible all four
views (right and left medial-lateral (RMLO, LMLO) and right and left cranial caudal (RCC, LCC)) of a case
were loaded into memory and displayed as downsampled images. Downsampling was still necessary to fit the
images on the screens. Two high-resolution MegaScan monitors with a screen size of 2048 by 2560 were used.
The four views were aligned to help the radiologist to look for asymmetries. In addition, one view could be
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selected. A viewport displayed a ROI at full resolution from a mammogram in this view. The size of the
viewport could be 512 by 512, 1014 by 1024 or 2048 by 2048. The center of the ROI was determined through a
mouse pointer in the chosen view. Thus, the original mammogram could also be viewed through the viewport, if
desired. More importantly, suspicious areas could be captured in the viewport and processed through
enhancement via multiscale expansion. The number of subbands of the expansion could be adjusted by the user
as well. After selecting a ROI, processing was applied to the corresponding matrix. The image was decomposed
onto dyadic wavelet basis functions yielding wavelet coefficients. Coefficients were modified by a sigmoidal
non-linear enhancement function, and the image was reconstructed from modified coefficients in nearly real-
time.

For each subband of the multiscale expansion each of the two parameters could be adjusted trough sliders. On
release of the slider button reconstruction was triggered, and a resulting image presented in a new window.
Reconstruction of a 512 by 512 matrix for five levels of decomposition (5 subbands) took 5 to 6 seconds. A four
subband reconstruction took on average 4 to 5 seconds. However, this could be reduced to achieve true real-
time performance, by optimizing the program. Results of enhanced images could be saved together with its
corresponding downsampled view, where the position of each ROI was recorded.

The enhancement protocol was run on an IBM IntelliStation Z Pro Professional Workstation Type 6865. This
machine has two Intel Pentium II Xeon microprocessors (450 MHz), 512MByte of RAM and is equipped with
36 GByte of hard disk space. Windows NT 4.0 was the operating system.

3. Paradigm of the Preliminary Study for Evaluation of Enhanced Mammograms.

The procedure followed by each radiologist is described below:

o Without Enhancement:

The radiologist made a diagnosis based only on the four original displays and the viewport. No processing of
ROIs was allowed.

o With Enhancement:

The radiologist selected a Region of Interest (ROI) on one of the views. Four levels of scales were computed.
No enhancement function was applied initially. The result of the multiscale enhancement on the ROI was
displayed in a new window. The radiologist then evaluated the quality of the enhanced ROI and adjusted the
equalizer sliders of a channel to improve the visual quality of the suspicious region. Once he/she was satisfied
with the visual result or if he/she judged that total satisfaction could not be achieved with the given tool, he/she
made a diagnostic decision.

A diagnosis included specifying all lesions found and assigning a BI-RAD scale to each breast and the case.

In addition, the radiologist was asked to choose a level of confidence (LOC) in a positive diagnosis, i.e. cancer
is present, on an integer scale from 1 (total confidence that there are no malignant lesions) to 5 (total confidence
that there is a malignant lesion). The value for the level of confidence was used in the analysis of data to decide
whether a lesion was classified as malignant or not.

4. Results of the Preliminary Study

An initial analysis of the data counted the number of false-positives and true-positives in each group of cases.
To consider a lesion as being diagnosed as malignant or benign, the LOC value was thresholded [32]. This
threshold influences the shape of the ROC curve and its interpretation. In general, any enhancement protocol
should increase sensitivity, i.e. fraction of true-positives (TPF), without decreasing specificity, i.e. essentially
without increasing the fraction of false-positives (FPF).

If the threshold for the level of confidence was chosen to be 3, meaning that lesions with a LOC greater or equal
3 were considered as malignant, then the average TPF was found to be 0.667 with enhancement, and TPF =
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0.569 without enhancement. This increase in sensitivity is encouraging, but was accompanied by a slight
increase in the fraction of false-positives (0.222 compared to 0.178). The latter is not surprising, since the
applied enhancement protocol only used dyadic spline wavelets with a non-linear sigmoidal enhancement
function, which is not the optimal choice for all types of lesions. As suggested in the original proposal of this
project, dyadic wavelet expansions are best used to enhance microcalcifications. If the analysis of the data only
focuses on microcalcifications, then we observed TPF = 0.417 with enhancement compared to TPF = 0.222
without enhancement. No increase or decrease in FPF was noticed. This observation reinforces our hypothesis
that feature specific enhancement protocols are indeed useful for visualizing subtle mammographic features.

5. Relavance to Statement of Work (Revised July, 1997).

These efforts correspondence to the goals and tasks identified in Phase IV — Visualizualization requirements for
evaluation studies, and Phase V — Peform a retrospective study on existing local and national mammography
databases.



~ Body

A. Enhancement Protocol

Contrast Enhancement via Multiscale Expansions: A Short Overview

We summarize below, our previous use of overcomplete multiscale representations for adaptive contrast
enhancement of mammograms. Critically sampled multiscale representations have been successfully used for
compression purposes and signal analysis, but are not suitable for detection and enhancement tasks because of
aliasing effects introduced during downsampling of the analysis [1], [2]. Overcomplete representations avoid
such aliasing artifacts and offer the desirable property for image enhancement, of being shift invariant [3], [4].
Indeed, this property will ensure that the spatial location of any mammographic finding within an image will be
preserved across all levels of scale. Note that the transform coefficient matrix size at each scale remains the
same as the spatial resolution of the original image, since there is no downsampling across each level of
analysis.

Overcomplete multiscale analysis and reconstruction algorithms using dyadic scales previously developed in
[5], [6], and [7] and were used as an initial choice of analysis function for our preliminary study of the
enhancement protocol. The implementation has been carried out using several lowpass filters and highpass
filters with defined frequency support. Each level corresponds to a set of filters and two branches: one for the
filtered image and one for the image at the previous level minus the filtered image of the current level. This
cascade of filters enables successive decompositions of an original image into finer and finer levels of analysis,
and estimation of the image into coarser levels in reconstruction. Figure 1 below, illustrates this filter bank
structure. In practice, a gain function modifies the matrices of coefficients that have been isolated by the filters
at each level and may boost coefficients at some scales and/or attenuate others. The framework for the high-
speed execution of enhancement processing by an analysis-reconstruction algorithm is illustrated in Figure 1.

; ‘ Gain Function

Analysis Synthesis

Figure 1: Multiscale analysis with non-linear gain function. (a) Filter bank implementation, (b) Example of the processing of a
ROI of a Chest radiograph. Normalized pixel intensity along a scan line that crosses a nodule is displayed for both
the original and the processed image.

The modified matrices of coefficients are simply “plugged in” during reconstruction producing a “focused”
subband enhancement. As shown above, the gain function can be implemented independently of a particular set
of filters and easily incorporated into a filter bank to provide the benefits of multiscale enhancement [8], [9].

Fast Implementation

Similar to orthogonal and biorthogonal discrete wavelet transforms [10], the discrete dyadic wavelet transform
can be implemented within a hierarchical filtering scheme. Let an input signal x(n) be real,
x(n)el'(Z),ne [O,N — 1] (i.e., x(n) is supported on the index interval [0, N-1]) and let X(@) be its Fourier
transform. Depending on the length of each filter impulse response, filtering an input signal may be computed
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either by multiplying X (@) by the frequency response of a filter or by circularly convolving x(n) with the
impulse response of a filter. Of course, such a periodically extended signal may change abruptly at the
boundaries causing artifacts. A common remedy for such a problem is realized by constructing a mirror
extended signal
{x(—n -1) ifne[-N,-1]

X (1) = .

e x(n) ifne[0,N -1]
where we chose the signal x,.(1) to be supported in [-N,N-1]. In [8] it is shown how a mirror extension is
particularly elegant solution in conjunction with symmetric/antisymmetric filters.
The optimized circular convolution described in [8] has been implemented in native “C” to speed up
performance for multiscale decomposition and image reconstruction. This algorithm was incorporated into the
graphical user interface (GUT) developed during this phase of the study.

The benefits of one specific enhancement protocol were investigated during the academic year September 1998
to May 1999. As described in the statement of work (July 1997), we envision developing feature specific
enhancement protocols for each type of lesion. Each protocol would include a multiscale expansion of a
mammogram with a specific basis and an associated non-linear enhancement function that best revealed
information in a mammogram for this type of lesion, e.g. microcalcifications. For the study described in this
report, a dyadic Spline wavelet function was used as the basis, and a non-linear sigmoidal function was applied
as the enhancement function. Both are described next in greater detail below.

Dyadic Spline Wavelet Algorithm
The wavelet transform of a signal f(x) at a scale s and position x is defined by W, f(x) = f *y,(x), where
v, (x)= l,/,(i) and y(x)is the wavelet function whose average is zero.

§ A

To allow fast numerical implementation of discrete wavelet transforms, Mallat and Zhong [11] introduced a
dyadic wavelet where the scale parameter varies only along the dyadic sequence {2}, with jez.The2-D

dyadic wavelet transform partitions plane orientations into two bands. This means that there are two channels of
analysis along the orthogonal x and y direction. The wavelet transform of the 2D signal f(x,y) at the scale 2 has

two components defined by: W, f(x,y) = f*y,, (%, ) and W), f(x,y)= f*v} (xy) , with v (e y)= —%W (%,Eyj—) ,
2

(d=1,2). In this final phase of the project, we used the particular quadratic spline wavelet function defined by
Mallat and Zhong in [11] of compact support and continuously differentiable. It is the derivative of a smoothing
cubic spline function as displayed in Figure 2 below.

(@ (b)

Figure 2: (a) Spline smoothing function, (b) Quadratic spline wavelet of compact support defined as the derivative of the
smoothing function.

In this context, the wavelet transform  f of the signal f'is proportional to the derivative of the signal

smoothed at the scale 2. The coefficients of modulus maxima detection is then equivalent to an adaptive
sampling that finds a signal variation points in the two orthogonal directions x and y.




As images represent finite energy signals measured at a finite resolution, we cannot compute the wavelet
transform at scales below the limit set by this resolution. We applied this analysis at integer scales varying from
1 (original signal) to the limit imposed by the acquisition resolution (digitizer sampling rate).

Figure 3 shows an example for one level of an overcomplete wavelet decomposition of a spiculated mass, and
Figure 4 exhibits selecting of microcalcifications as wavelet coefficients at the finest dyadic scale.

(a) ®) © @

Figure 3: Level 5 of an overcomplete dyadic wavelet decomposition of a spiculated mass. (a) Original image. (b)
Approximation image. (¢) Horizontal details. (d) Vertical details.

€)) ® ©

Figure 4: (a) Original ROI with microcalcifications. Horizontal (b) and vertical () dyadic wavelet coefficients.

Brushlet multiscale functions

During the past year, in addition to dyadic Spline wavelets we investigated [12] the brushlet basis introduced by
F. Meyer and R. Coifman in [13] in 1997 for efficient compression of texture. The brushlet functions are
complex valued, well localized in the frequency domain. Their construction is based on a windowed Fourier
transform of the Fourier transform of the image. The projection on the orthonormal basis of brushlet functions
provides a decomposition of the image along distinct orientations. We are optimistic that we can to take
advantage of the special characteristics of the brushlet functions in the context of the continuation of the work
reported here.

The general scheme of the analysis performed by the brushlet is the following. Let us call f'a given signal and

f its Fourier transform. We can project f on the brushlet basis, f = ZZ fn M, ; With u, ; the brushlet basis
noj

n,j

function and fn ; the brushlet coefficients as described in [13]. The Fourier transform domain of the signal is
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divided into subintervals [a,,a,, ] of size I . For each interval indexed n, the signal £ is projected on u, ;, with

n? n+l
1 1,1
l arevy l

n n

=0,
<2im(x-ap)/ Iy “2im(x+an)! iy e—2i7y’(2a,,+1 -x-ap)/ly

e
The brushlet function is defined as u,, (x)=b,(x—¢,) ———+Vv(x—a,) ——=—+V(x—a,,)———=—— on

the interval [a, —¢, a,,, +¢], with & the overlap parameter between two adjacent intervals. The widow function

b, and the “bump” function v define the length of the support of u, ; as illustrated in Figure 5 below.

)|

UL
Y

(a) (b)
Figure 5: (a), Windowing function bn, and bump function v defined on the interval [an-¢, an+1+¢]. (b), Real part of brushlet
basis function uj,n.

By applying the inverse Fourier transform, we have a decomposition of , f= ZZJ; »;W.,; on the orthonormal
n j

basis w, ;, inverse Fourier transform of u, ;. The w, ; functions are defined as:

w, (x)= Tll_—e“”""e‘”’"" (-1)'b, [x - 71—}— 2i sin(frl"x)ﬁ(x + ILJ . The parameter l,, appears as a scaling factor
of the analysis and j is the translation index of the brushlet, so that w, ; has an expression similar to a wavelet.
The phase of the function encodes the orientation of the brushlet pattern in the 2-D case as illustrated in Figure
6.

n n

03
02| U .

a.l a2 b.1 b.2

Figure 6: (a.1-a.2) real part of 1D brushlet basis function, (b.1-b.2) real part of 2D brushlet basis function for two different
scale parameter value /,s and the length of window function b in 1-D and size of the quadrants in the Fourier plane
in 2-D.

The projection of f on u, ;is efficiently implemented by the folding technique and Fourier transform. With a

division of the image into four quadrants, the decomposition on u, ; provides four sets of coefficients showing

7 2 and —341 . An arbitrary number of

the texture with patterns oriented along the directions —-—4&,7 e

orientations are possible to construct.
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Meyer has shown that these bases can lead to efficient compression of richly textured images. We believe that
such basis can be applied to mammograms for directional feature enhancement, texture analysis and
segmentation. Below in Figure 7 we illustrate the ability of the brushlet to decompose textures into distinct
directions within a selected region of interest of a mammogram containing a spiculated mass oriented in -45°
direction. The modulus of the coefficient for analysis in +45° and -45° shows strong values in the orientation
direction of the mass and flat low values in the orthogonal direction. Selective amplification of the coefficients
in the -45° direction and attenuation of the coefficients in +45° will enhance the spicular lesion and details of its
fine structures.

(@) (b.1) (b.2) (c.1) (c2)
Figure 7: (a). Original ROI in mammogram with spicular lesion. (b.1-b.2) Brushlet coefficients in % .

(c.1-c.2) Brushlet coefficients in Z .

S

We believe that the ability of the brushlet functions to decompose the signal under different texture orientations
is particularly well suited for the enhancement of spicular subtle lesions in the mammograms. Adjustment of the
scale parameter I modifies the resolution of the analysis in terms of texture orientation and oscillation
frequency.

Indeed, the idea of building a specialized detector for spicular lesions with brushlet functions is very promising.
We hope to continue this direction through additional support from the National Institute of Health (NIH) and
the US Army Breast Cancer Research program.

Non-Linear Enhancement Function

The enhancement process modifies the analysis coefficients within distinct subbands. This is illustrated in
Figure 8 below.

Original -
Image

Processing Steps

Figure 8: Overview of multiscale enhancement protocol.

Modification of selected analysis coefficients within a certain scale can make more obvious indiscernible or
barely seen features [14]. A framework for contrast enhancement was achieved by applying a non-linear
function to multiscale coefficients. This operation resulted in attenuation or local increasing of coefficients.
Enhancement or gain functions must be cumulative and monotonically increasing in order to preserve the
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original information in the image and to avoid artifacts [6]. Figure 9(a) provides a very simple example of a
piecewise linear gain function. The parameter wj represents the modulus of a multiscale coefficient.
Coefficients are modified by the gain function f{wy). T is the threshold of the function. For §< 45" there will be
an attenuation of the coefficients (a<1), at # = 45° we have the identity function (a=1). For 6> 45° there is a
smooth amplification of the coefficients (¢>1) below the threshold value. The values of the two parameters, T
and 6, determine the final shape of the gain function. Figure 9(b) displays a gain function of employing hard-
thresholding for denoising. Unfortunately, These two particular examples have the disadvantage of being
discontinuous at the threshold value 7. This could result in an abnormal distribution of coefficient values in the
output and may create sharp peaks on both ends of the histogram of a particular output mapping. For this
reason, smoother functions, like sigmoids, are preferable and were used in this project. Figure 9(c) shows an
example of such a function as described in [15].

Enhancement

Attenuation

Enhancement

Figure 9: (a) A simple piecewise linear enhancement function, (b) hard-thresholding, (¢) .a sample non-linear enhancement
function.

The analytical formulation of the gain function as we designed it in [15], [16] is the following:

f(wy) = alsigm (c(w,; - b)) sigm (= c(w + b))
~ 1
“= sigm (c(l - b))— sigm (— c(l1+ b))’

sigm (y) =

0<bxkl

1+e™”

Parameters b and ¢ control the threshold and the rate of enhancement respectively. The gain function is
continuous and monotically increasing, and has a continuous first derivative. This ensures that the gain function
will not introduce any new discontinuities of coefficients in the transform domain.

This particular gain function decreases the value of the coefficients in the center range of values around zero,
which is equivalent to a denoising action, while it increases the values of the coefficients outside this range,
equivalent to enhancement. This type of non-linear (smooth) gain function, in ‘steps’, offers a very rich and
flexible paradigm to carry out non-linear dynamic analysis of coefficients within a specific scale [17].

There are many criteria for the selection of the enhancement function applied to the coefficients of a particular
level of analysis for contrast enhancement. A preliminary goal of the phase of this project was to develop a
research tool for testing enhancement functions targeted for specific mammographic features. As this process
requires specialized expertise and a substantial time investment, no systematic study of the problem of
associating enhancement functions with target features in mammograms has been reported in the literature.

The two parameters required for the enhancement processing are threshold and gain/attenuation. The gain
function is sigmoidal and will enhance coefficients above the threshold value and decrease the coefficients
below the threshold of the order of the gain amplitude.
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In [16] we used quantitative information retrieved from the image to compute the threshold and the gain
amplitude. Non linear estimators are signal dependent and behave differently for different realizations of each
signal. In this frame of work, Johnstone and Donoho have shown that by considering the signal as deterministic,
thresholding of wavelet coefficients gives a nearly optimal estimation of piecewise smooth functions [18], [19].
Selection of the threshold value was based on comparison with local variance in the transform domain. For a

noisy signal of size N, thresholding of the wavelet coefficients with T = o4/2In(N) where o is the coefficients

standard deviation provides an asymptotically optimal estimator of the original signal in the mini-max sense.
Soft thresholding of the wavelet coefficients performs an adaptive smoothing of the image by averaging the
noisy areas and preserving or enhancing coefficients in areas of sharp transitions. Noise standard deviation can
be estimated by determining the median wavelet coefficient value at the finest scale or with local discrete
statistical estimation in the transform domain. Using extremely local variances leads to a very aggressive
posturing of the gain function, and represents a high amount of intervention in adjusting the output, while global
variance measurements were less noticeable. Superiority of either method depends on the screening protocol
used by the radiologist and the kind of analysis to be performed. For example, fine microcalcifications represent
high frequency information of the image. We would expect the local variance for such a feature will be high
with a selected ROL Consequently, smooth amplification of coefficients within this particular spatial frequency
(in combination with possibly decreasing the information of other spatial frequencies) will enhance these
features of interest. Similar analysis can be done to enhance low spatial frequency features such as masses.
Since the computation of the threshold and the gain function use data dependent information such as noise,
standard deviation and local coefficient variance, digital and digitized radiographs acquired under different
imaging conditions are processed differently. Intrinsic properties of the radiograph are incorporated in the
setting of the parameters so that enhancement is adaptively optimized to each mammogram processed.
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B. Development of a Graphical User Interface (GUI)

Motivation

Running an enhancement algorithm in a batch mode might be sufficient for research purposes. However,
adjustment of parameters ties to a data dependent enhancement function is slow because of the repeated need to
decompose and reconstruct from modified coefficients. A more desirable situation is to observe the results of
modified multiscale coefficients and to continue the enhancement procedure, until results are visually
satisfactory or the decision is made that no further improvement can be achieved. In addition, with introducing
fixed enhancement protocols into a clinical screening paradigm, the algorithm must be simple, fast, and user-
friendly, i.e. usage of the algorithm should be familiar to the radiologist and intuitive. Since each radiologist
may have preferences with respect to contrast in mammograms, it must be possible to adjust parameter settings
to those preferences. Thus, a graphical user interface was designed to facilitate carrying out a such a studiy and
to create a software prototype, whose successors might find entrance into clinical screening. We call this
application a “test bed” softcopy display tool.

The test bed softcopy display tool provided our research team a means to carry out rapidly, experimental studies
for sigmoidal enhancement function and compute optimal values for threshold and gain values using
information extracted from selected ROIs. It enabled quick comparison of results and made feasible a
methodical examination with regard to measuring image quality. The first version of this research software was
employed for a ROC study, which included four radiologists from the Columbia-Presbyterian Medical Center as
reported in Section C of this report.

Another reason for testing user-interactive enhancement techniques in a clinical environment stemmed from the
fact that New York Presbyterian Hospital, as well as others throughout the country, is undertaking an enterprise
wide reorganization. The Department of Radiology is eliminating film support from daily practice and
screening diagnosis for MRI and CT. In house diagnosis will be performed on soft copy display starting in July
1999. The Breast Imaging Center will not suppress film support, because of existing limitations of softcopy
display. Nevertheless, in a screening environment, integration of advanced software tools to improve image
quality and the specificity of findings without discarding information is of critical importance. There remains a
crucial need for the development of soft copy display tools that allow the radiologist to preserve or improve
his/her diagnostic performance in the context of a daily routine screening in a clinical environment. Radiologists
will be confronted with new visualization technologies and new working tools redefining screening protocols.
Because of the current limitations of hardware in display resolution, we believe that enhancement of
mammograms will allow mammographers use these new techniques and possibly improve at the same time
their confidence and diagnostic performance. The opportunity to develop a CAD tool in this context is unique
and bears a potential to orient the directions of research in this field and move digital mammography forward.

Design and Implementation

The graphical user interface (GUI) developed for this study was written in Visual C++ 6.0. This particular
development environment was chosen to take advantage of already predefined classes wrapping parts of a GUIL,
such as sliders and dialog boxes. Moreover, the code for the wavelet expansion and image reconstruction that
was written in native “C” to speed up performance could be incorporated and executed in this environment
without major modifications, thus shortening development time. Some of the guidelines and considerations for
the design and implementation of the GUI are described next.

The prototype test bed interface was primarily designed to process raw 16-bit data (image files without header).
Data was obtained from the national mammography database of digitized radiographs from the University of
South Florida. We have the complete database of digitized mammograms (stored on twenty-one 8mm tapes).
Our database contained 586 selected cases of malignant lesions, biopsy proven, and 437 cases of normal
breasts. More specifically, different types of lesions are represented in the following proportions: 100 round and
oval malignant masses, 216 spicular lesions and 248 microcalcifications. The quality of the mammograms
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varied. 559 cases of dense breasts (density of 3 and 4) with 266 normals and 293 cancerous, referred by
radiologists as the most challenging cases, are included in the database.

Images from the mammography database were digitized from film at the resolutions of 40 to 50 um. Image line
length vary between 2000 and 3000 pixels, and number of rows from 4000 to 5900 pixels. Depending on the
scanner utilized for digitization the contrast resolution was either 12 bits or 16 bits per pixel resulting in 15-50
megabytes per file.

To handle the large amounts of data and to provide the diagnosing radiologist as much information as possible
all four views (right and left medial-lateral (RMLO, LMLO) and right and left cranial caudal (RCC,LCC)) of a
case were loaded into memory and displayed as downsampled images. Downsampling was necessary to fit the
images on screen, consisting of two high-resolution MegaScan monitors each with a screen size of 2048 by
2560. The four views were aligned to assist the radiologist to look for asymmetries. In addition, one view could
be selected, and a viewport displayed a cursor selected ROI at full resolution from a selected mammogram. The
size of the viewport could be chosen as 512 by 512, 1014 by 1024 or even 2048 by 2048. The center of the ROI
was determined through the mouse pointer in a chosen window. Thus, the original mammogram could also be
viewed through the viewport, if desired. More importantly, suspicious areas could be captured in the viewport
and processed through enhancement via multiscale expansion. The user could adjust the number of subbands of
the expansion as well. After selecting a ROI processing was applied. The image was decomposed onto dyadic
wavelet basis functions yielding wavelet coefficients. Coefficients were modified by a sigmoidal non-linear
enhancement function, and the image was reconstructed from these modified coefficients in nearly real-time.

As mentioned in Section A of this report the shape of the enhancement function can be changed through
modification of the two parameters gain and threshold. For each subband of the multiscale expansion each
parameter could be adjusted trough sliders (see Figure 10(b)). On release of the slider button reconstruction was
“triggered”, and a resulting image presented in an output window. Reconstruction of a 512 by 512 matrix for
five levels of decomposition (5 subbands) took 5 to 6 seconds, for four subbands, reconstruction time shortened
to 4 to 5 seconds. During our ROC study the application was executed in a double-buffering mode. The
application was executed twice to reduce waiting time for the loading of images. Since the total amount of data
to be loaded into memory for one case amounted to up to 200 MByte, it took up to 40 seconds to finish. To
avoid idle times for the diagnosing radiologist, one case was loaded in the background, while she/he worked on
one previously uploaded. All code was compiled to maximize speed. Reconstruction times trecon for different
sizes of the ROI and different number of levels of analysis are given in Table 1. However, reconstruction time
can be further reduced to achieve true real-time performance, by employing faster algorithms.

After processing, results of enhanced images could be saved together with its corresponding downsampled
view, where the position of the ROI was marked. This was necessary to be able to evaluate a particular
diagnosis for each case in comparison with the “ground truth” provided in the database. For the same case,
different views and multiple ROIs out of the same view could be selected for processing. Hence, all suspicious
areas in a case could be carefully examined.

sion of Interes L ’
512 x 512 4-5 seconds 6-7 seconds

1024 x 1024 19-20 seconds 24-25 seconds

Table 1: Reconstruction times t,..,, for two levels of analysis and two sizes of ROL

The enhancement protocol was run on an IBM IntelliStation Z Pro Professional Workstation Type 6865. This
machine has two Intel Pentium II Xeon microprocessors (450 MHz), 512 MByte of RAM and is equipped with
36 GByte of hard disk space. Windows NT 4.0 service pack 4 was the operating system.

Figure 10(b) shows the test bed interface as an illustration of the type of tool constructed in the preliminary
study of this project. For internal research and development, optimal enhancement parameters will later be
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computed with information extracted from selected ROI’s. Interactive (real-time) enhancement was
accomplished via sliders shown in the graphical user interface (GUI). The enhancement operation relied on the
optimality of parameters derived from their mathematical models and on the sirategy employed for the type of
enhancement applied to each subband of coefficients (amplification, preservation or diminution). Selected
subband coefficients at a particular level could be strongly suppressed by choosing large thresholds (> 2) and
small gains (< 1), which can be desirable for the elimination of (structured and acquisition) noise, or normal
benign anatomical structures. A later version of this tool will allow display the histogram of analysis
coefficients at a particular level and visualize the coefficients at any level.

We believe that these options provided sufficient flexibility for identifying feature specific enhancement
protocols. Since the size of digital mammograms can be quite large, a ROI (fixed at either 512 x 512 or 1024 x
1024) within the original image is chosen to avoid the computation over region that do not contain suspicious
areas. This is also shown in Figure 10, where part (a) exhibits an original digitized mammogram with a 512 x
512 ROI that contains a possible mass. Figure 10(c) and Figure 10(d) display this ROI before and after
enhancement via non-linear modification of multiscale coefficients.
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Figure 10: (a) Original mammogram with selected ROI containing a mass, (b) Test bed interface menu, (¢) Original ROI, and
(d) Enhanced ROI via subband equalization.
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Display and Hardware Settings

High resolution displays are needed to present mammograms in an authentic way and to explore the richness of
information quantized at 16-bit per pixel (bpp) grayscale data (65536 shades of gray). To meet those conditions
the IBM Intellistation workstation in our laboratory has been equipped with two Metheus P1540 Graphics
controllers. These are ultra high resolution display subsystems for the PCI bus with a resolution of 2048x2560
pixels each, a digital-to-analog converter (DAC) capable of 1024 shades of gray, real time window leveling.
With the Metheus framebuffers, an extended hardware palette of nearly 16,000 entries can be accessed through
special C++ function calls that were part of a library provided to us as developers for BARCO/Metheus. These
functions wrapped DirectDraw functionality provided by Microsoft to obtain direct access to the video
framebuffer and to take advantage of advanced display capabilities. Please see attached letter from
BARCO/Metheus that certifies that our research group is an official member of the BARCO/Metheus Software
Developer’s program, which allowed our group to have access to the source code used for display
programming. Using these library functions, the extended palette was loaded with a ramp of 4096 shades of
gray corresponding to 12-bit resolution. Images stored in 16-bit per pixel format, were rescaled to 12 bpp, if
necessary (most of the mammograms were digitized at a resolution of 12 bpp), and then displayed at full
resolution. Direct access to the video framebuffer also sped up the display process useful for updating and
refreshing the different views on the screen.

Two high-resolution MegaScan monitors were attached to a single workstation providing dual headed display
on a single logical frame buffer or virtual desktop of 4000x2048 pixels, respectively with Windows NT 4.0. To
ensure the accurate depiction of the same image quality on both screens, a Metheus P1500 luminance
photometer was used. It recognizes the 1024 shades of gray displayed by a monitor and has a range of 0-450ft-
L. Both monitors were calibrated to correct for non-linearity in through gamma correction. The Metheus display
driver supports a gamma lookup table (LUT) loading function that accomplishes this. The gamma LUT can
conceptually be thought to be between the palette lookup table and the actual DAC, which converts the digital
luminance value into an analog luminance value (voltage) to send to the monitor. The gamma LUT was created
from the real monitor luminance so that each palette intensity provided the expected linear response out of the
monitor. This table was calculated by looking in the actual luminance table and finding the closest match for the
desired luminance. The entire procedure can be carried out with software provided by BARCO/Metheus that
measures luminance intensities, calculates a gamma LUT, which is written to file. By loading these files the
non-linearity is corrected.
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Figure 11 shows Dr. Koenigsberg, one of three radiologists who participated in this investigation, during the
first ROC study described in this report.

(@ (b)

Figure 11: (a) Tova Koenigsberg, M.D., using the GUI during the preliminary ROC study described above. (b) Typical screen
display used during the ROC study: on the right monitor four original digitized mammograms of one case are
displayed, on the left monitor, in the top-right corner is the original mammogram to be enhanced, in the down-right
corner is the GUI interface, in the lower-left corner is an original ROI selected by the radiologist, in the lower-left
corner a sample enhanced ROI is shown.

Lighting conditions were controlled for the ROC study to model reading room conditions. The ambient light
intensity was measured with the luminance photometer to be 12.802659 candelea/m’. It is worthwhile to note
that the optimality of enhancement parameters is independent of the CRT display quality and the image
acquisition quality. As their computation is data driven, they are adapted to signal content and its
characteristics. As our radiologists give us feedback on the quality of the enhancement, we expect to converge
and adjust these initial default settings.
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C. Description of the Receiver Operating Characteristics (ROC) study

We have carried out the first receiver operating characteristics (ROC) study focusing on overcomplete dyadic
wavelets for enhancement of mammographic features in digitized mammograms. The enhancement protocol
was based on multiscale expansions and non-linear enhancement functions explicitly described in Section A of
this report. Specifically, dyadic spline wavelet functions were used together with a sigmoidal non-linear
enhancement function. The ROC study included three radiologists specialized in mammography.

The medical doctors involved in this study had a strong background in CAD systems evaluations and ROC
studies. The Director of the Breast Imaging Center at Columbia Presbyterian Medical Center, Dr. Smith,
assisted in the selection of cases.

1. Selection of Cases

To measure the benefits of diagnosing digitized mammograms with enhancement through multiscale
expansions, we focused on dense mammograms, i.e. mammograms of density 3 and 4, which are the most
difficult cases in screening. In general, the enhancement protocol aimed at improving the detection and
localization of mammographic features, such as microcalcifications, masses, and spicular lesions without
introducing “false-positives”.

To compare the performance of radiologists with and without using the enhancement tool, two groups of 30
cases each were presented. Each group contained 15 cases of cancerous and 15 cases of normal mammograms.
As mentioned above, a national mammography database of the University of South Florida provided “ground
truth” (mostly through biopsy) for the selected cases. The selection was carried out very carefully under the
guidance of Dr. Smith, in order to find rather challenging cases of similar difficulty for each group. Images
showing metal markers (“bibis”) to indicate suspicious regions of breast tissue were avoided as well as obvious
malignancies. Due to time constraints the number of cases had to be limited for this initial study. In the future,
we plan to carry out extended ROC studies with a larger number of cases and with a further optimized GUI
display.

2. Paradigm of Diagnosis of Study

The enhancement procedure followed by the radiologist was the following:

o Without Enhancement:

The radiologist made a diagnosis based only on the four original displays and the viewport. No processing of
ROIs was allowed.

e With Enhancement:

The radiologist selected a Region of Interest (ROI) on one of the views and could apply multiscale
enhancement. Four levels of scales were computed. The result of the multiscale enhancement on the ROI was
displayed in a new window. The radiologist then evaluated the quality of the enhanced ROI and adjusted the
equalizer sliders of a channel to improve the visual quality of the suspicious region. Once he/she was satisfied
with the visual result or if he/she judged that total satisfaction could not be achieved with the given tool, he/she
made a diagnostic decision.

A diagnosis included specifying all lesions found and assigning a BI-RAD scale to each breast and the case.

In addition, the radiologist was asked to choose a level of confidence (LOC) for each positive diagnosis, i.e.
cancer is present, on an integer scale from 1 (total confidence that there are no malignant lesions) to 5 (total
confidence that there is a malignant lesion). The value for the level of confidence was used in the analysis of
data to decide whether a lesion was classified as malignant or not.
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3. ROC Data

Table 2 and Table 3 on the next two pages show the data cquired during the first ROC study. Groupl comprises
the set of cases, where the radiologists were allowed to take advantage of the enhancement protocol, whereas
group 2 contains those cases, where no processing could be applied. Each of the tables shows the case numbers,
the case designation and total number (#) of lesions for each case according to the mammography database, and
for each of the three mammographers the Bl RAD rating and level of confidence (LOC) values. The BL RAD
rating could be chosen from the standard categories 0-5, with 0 meaning that additional information for a more
confident diagnosis was needed. In those cases, the radiologists were asked to also select a BL RAD rating
different from 0, if they were asked to make a diagnosis without any additional information. This number is
shown in parentheses for the corresponding cases.

Both groups are sorted into actually-negative cases (normals with 0 lesions) and actually-positive cases (cancers
with, at least 1malignant lesion), since this was required for subsequent data analysis.
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Group1 [(with Enhancement) | | |
Mammographer 1 Mammographer 2 Mammographer 3
Case # [Database [DB_Total # of Lesions | Bl _RAD LOC Bl_RAD LOC Bl_RAD LOC
2 A_0058 0 4 3 1 1 3 2
5 A_0069 0 1 2 1 1 1 1
6 A_0041 0 3 2 1 1 1 1
7 A_0077 0 3 2 2 1 2 1
9 A_0064 0 2 2 2 1 2 2
13 A_0067 0 0(3) 2 1 1 0(3) 3
15 A_0080 0 0(3) 3 2 1 2 1
16 A_0089 0 3 3 1 1 1 2
19 A_0062 0 2 2 1 1 2 1
21 A_0057 0 2 2 1 1 0(3) 3
24 A_0072 0 1 2 1 1 1 1
25 A_0070 0 1 2 0(3) 2 1 2
26 A_0068 0 1 2 1 1 2 1
28 A_0039 0 3 2 1 1 0(4) 3
30 A_0092 0 3 2 1 1 1 1
1 B_3044 1 4 4 4 4 4 3
3 B_3073 1 3 2 3 2 4 3
4 B_3006 1 5 5 5 5 5 5
8 B_3032 1 0(3) 2 5 4 4 4
10 B_3107 1 5 4 4 4 5 4
11 C_0060 1 0(3) 3 0 3 0(4) 3
12 B_3057 1 4 4 5 4 4 4
14 B_3078 1 5 4 5 4 0(4) 3
17 B_3033 1 0(3) 2 0 2 0(3) 3
18 B_3031 1 0(4) 4 5 4 0(3) 3
20 B_3076 1 0(3) 3 0 3 0(5) 4
22 B_3058 1 5 5 5 5 4 4
23 B_3079 1 2 2 1 1 1 1
27 B_3047 1 3 2 0(4) 3 0(4) 3
29 C_0008 1 0(3) 3 3 3 0(4) 3

Table 2: ROC data for three mammographers for group 1, i.e. with enhancement.
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Group? |(without Enhancement) | | |
Mammographer 1 Mammographer 2 Mammographer 3
Case # |Database |[DB_Total # of Lesions | Bl _RAD LOC Bl_RAD LOC Bl_RAD LOC
3 A_0015 0 2 2 1 1 1 1
4 A_0034 0 2 2 0(3) 2 0(3) 3
5 A 0112 0 2 1 1 1 0(4) 3
8 A_0020 0 2 2 1 1 2 2
9 A_0003 0 3 2 1 1 1 1
13 A_0030 0 2 2 1 1 0(3) 2
15 A_0009 0 2 2 1 1 2 2
16 A_0037 0 2 2 1 1 1 2
17 A_0099 0 0(3) 2 1 1 2 1
18 A_0116 0 0(3) 3 1 1 1 1
21 A_0035 0 0(3) 2 0(4) 3 0(3) 3
23 A_0018 0 2 2 1 1 1 1
24 A_0022 0 2 2 1 1 0(3) 3
27 A_0005 0 0(3) 2 0(3) 2 1 2
30 A_0016 0 2 2 1 1 1 2
1 B_3003 1 1 2 1 1 5 5
2 B_3389 1 2 2 1 1 1 1
6 B_3009 1 0(4) 4 0(3) 2 0(4) 3
7 C_0309 1 4 4 1 1 0(4) 3
10 C_0142 1 0(3) 3 0(3) 2 1 2
11 B_3016 1 0(4) 4 0(3) 2 4 4
12 B_3382 1 2 2 1 1 3 2
14 B_3134 1 5 4 4 4 5 5
19 B_3005 3 0(3) 3 3 3 0(4) 4
20 C_0127 1 0(3) 3 0(4) 3 0(4) 4
22 C_0015 1 0(4) 4 0(4) 4 5 5
25 B_3007 1 3 3 4 3 4 4
26 B_3012 1 5 5 5 5 0(4) 3
28 B_3380 1 0(4) 4 4 4 0(4) 4
29 C_0358 1 5 5 5 4 0(4) 4

Table 3: ROC data for three mammographers for group 2, i.e. without enhancement.
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4. ROC Analysis: General Principles

The most common method to objectively evaluate the performance of a diagnostic system or the difference in
performance between two diagnostic systems is ROC analysis. It compares radiologists’ image-based diagnoses
with actual states of disease and health. For ROC analysis performance of a diagnostic system can be
meaningfully described by the indices of “sensitivity” and “specificity”, where “sensitivity” can be expressed as
the true-positive fraction (TPF) and “specificity” by the true-negative fraction (TNF) of a diagnosis [20]. TPF
corresponds to the fraction of cases in a study that have been diagnosed as positive (diseased) and that are
actually positive, and TNF corresponds to the fraction of cases that have been diagnosed as negative (healthy)
and that are actually negative. In a complimentary way, the false-negative fraction (FNF) and the false-positive
fraction (FPF) can be defined as FNF = 1-TPF and FPF = 1-TPF, respectively, with a similar interpretation. Due
to this dependence of these indices it is only necessary to measure one pair of indices, and frequently TPF and
FPF are used. In this report we also have focussed on FPF and TPF to characterize the performance of our
enhancement protocol.

In general, it is desirable for a diagnostic system to increase “sensitivity” and “specificity” or, at least to
increase TPF without increasing FPF.

The underlying model for ROC analysis is the use of probability density distributions of a radiologist’s
confidence in a positive diagnosis for a particular diagnostic task for actually positive and actually negative
patients [20]. These distributions generally have different means. It is currently accepted that based on a
confidence threshold, i.e. a particular level of confidence (LOC) in a positive diagnosis, a diagnosis is
considered to be positive, if it exceeds this threshold, and a diagnosis is considered to be negative, if it falls
below the threshold. TPF and FPF are then calculated from the probability density distributions as areas under
the curves delimited by the confidence threshold (see Figure 12 below). Changing the confidence threshold
yields changes in TPF and FPF that are inversely related. If the confidence threshold is varied continuously, a
curve can be generated from the pair values for TPF and FPF. Conventionally, an ROC curve plots TPF (i.e.,
sensitivity) as a function of FPF (i.e., 1-[specificity]). Clearly, both TPF and FPF can take values between 0.0
and 1.0. Since the curve represents all of the compromises between sensitivity and specificity that can be
achieved by a diagnostic system as the confidence threshold is varied, ROC curves indicating better decision
performance are positioned higher in the unit square spanned by FPF and TPF. Therefore, the area under the
ROC curve A, provides a useful summary index for the inherent discrimination performance of a diagnostic
system. The area A, can be interpreted as the average value of sensitivity corresponding ROC curve, if the
specificity of the system is selected randomly between 0.0 and 1.0. Equivalently, A, can be considered as the
average value of specificity on the ROC curve, if sensitivity is selected randomly between 0.0 and 1.0 [20].

Data for an ROC analysis is obtained by providing a set of rating categories to the radiologist, from which to
choose for a particular diagnostic task. As ratings we have chosen discrete values from 1 to 5 for the level of
confidence (LOC) in a positive diagnosis. The meaning of these values was as follows: (1) definitely or almost
definitely negative, (2) probably negative, (3) possibly positive, (4) probably positive, and (5) definitely or
almost definitely positive. With this choice the value for the LOC is similar to the standard BI_RAD rating in
mammographic screening.
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Figure 12: Schematic example of the model that underlies ROC analysis. The bell-shaped curves represent probability density
distributions of a radiologist’s confidence in a positive diagnosis. A confidence threshold, represented by a vertical
line, separates “positive” decisions from “negative” decisions (This figure was reprinted from([20}).

To generate the ROC curve from discrete data, it is required to make assumptions about the functional form of
the curve. The “binormal” model has been widely used in medical imaging. This model includes two adjustable
parameters, and it is assumed that each conventional ROC curve has the same functional form as that implied
by two “normal” (i.e., Gaussian) decision variable distributions with generally different means and standard
deviations [21], [22]. It has the property that all possible ROC curves are transformed into straight lines, if they
are plotted on “normal-deviate” axes [21], [22]. In effect, a “normal-deviate” graph stretches the unit square of
the conventional ROC plot into an entire plane in a way such that the center of the unit square becomes the
origin of the normal-deviate graph and the distance between any two points in the unit square is magnified
increasingly as the points approach the border of the square.

The two adjustable parameters of the binormal ROC curve can be taken to be the y-intercept and the slope of
the straight line that represents the ROC curve, when it is plotted on normal-deviate axes. These two
parameters, denoted as “a’ and “b”, can be interpreted as an effective pair of underlying Gaussian distributions a
s the distance between the means of the two distributions and the standard deviation of the actually negative
distribution, respectively with both expressed in units of the standard deviation of the actually positive
distribution [20]. With the binormal model a maximum-likelihood parameter estimation scheme is then used to
generate an ROC curve that best represents the data.

If two different diagnostic systems are to be evaluated, the statistical difference of an apparent difference
between measured ROC curves is of interest. For a detailed review of testing differences between ROC curves,
the reader is referred to [23] and [24].

5. Results from ROC Analysis and Discussion

Meaningful ROC analysis was possible, since the “ground truth” for each case was provided by the
mammography database. An initial analysis of the data counted the number of false-positives and true-positives
in each group of cases. To consider a lesion as being diagnosed as malignant or benign, the LOC value was
thresholded [20]. This threshold influences the shape of the ROC curve and its interpretation. In general, any
enhancement protocol should increase sensitivity, i.e. fraction of true-positives (TPF), without decreasing
specificity, i.e. essentially without increasing the fraction of false-positives (FPF) [25].

If the threshold for the level of confidence was chosen to be 3, meaning that lesions with a LOC greater or equal
3 were considered as malignant, then the average TPF was found to be 0.667 with enhancement, and TPF =
0.569 without enhancement. This observed increase in sensitivity is encouraging, though it was accompanied by
a slight increase in the fraction of false-positives (0.222 compared to 0.178). The latter is not too surprising,
since the applied enhancement protocol only used dyadic spline wavelets with the non-linear sigmoidal
enhancement function, which is not be the optimal choice for all types of lesions. We believe that dyadic
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wavelet expansions are best used to enhance microcalcifications. If the analysis of the data only focuses on
microcalcifications, then we observed TPF = 0.417 with enhancement compared to TPF = 0.222 without
enhancement. No increase or decrease in FPF was noticed! The last finding reinforces the idea for future
research to design specific enhancement protocols for each mammographic feature.

Table 4 summarizes initial results of the first ROC study using a single basis function.

TPF FPF TPF FPF
0.667 0.233 0.569 0.178
~ TPF_ ~ FPF ‘ “TPF “FPF
0.417 0.0 0.222 0.0
Table 4: Results of preliminary ROC study. TPF refers to the fraction of true-positives and FPF to the fraction of false-
positives.

A more thorough analysis of the data was undertaken by using the ROCKIT software developed by the group
led by Charles Metz at the University of Chicago [26]. This software was written to analyze data from ROC
studies and to generate corresponding ROC curves. More specifically, the purpose of ROCKIT is to calculate
maximum-likelihood estimates of the parameters of a conventional “binormal” model for the input data, to
calculate maximum-likelihood estimates of the parameters of a “bivariate binormal” model for data from two
potentially correlated diagnostic tests and, thus, to estimate the binormal ROC curves implied by those data and
their correlation; and to calculate the statistical significance of the difference between two ROC curve estimates
using any one of three distinct statistical tests:

1. The Bivariate Test: A bivariate Chi-square test of the simultaneous differences between the “a”
parameters and between the “b” parameters of the two ROC curves. (Null hypothesis: the data sets arose
from the same binormal ROC curve.)

2. The Area Test: A univariate z-score test of the difference between the areas under the two ROC curves.
(Null hypothiesis: the data sets arose from binormal ROC curves with equal areas beneath them.)

3. The TFP Test: A univariate z-score test of the difference between the true-positive fractions (TPFs) on
the two ROC curves at a selected false-positive fraction (FPF). (A@/l Aypothesis: the data sets arose from
binormal ROC curves having the same TPF at the selected FPF.)

Three types of input data are allowed for statistical testing of the differences between ROC curves:

1. Unpaired (uncorrelated) test results. The two “conditions™ are applied to independent case samples — for
example, from two different diagnostic tests performed on the different patients, from two different
radiologists who make probability judgments concerning the presence of a specified disease in different
images, etc.;

2. Fully paired (correlated) test results, in which data from both of two conditions are available for each
case in a single case sample. The two “conditions” in each test-result pair could correspond, for example,
to two different diagnostic tests performed on the same patient, to two different radiologists who make
probability judgments concerning the presence of a specified disease in the same image, etc.; and

3. Partially-paired test results — for example, two different diagnostic tests performed on the same patient
sample and on some additional patients who received only one of the diagnostic tests.
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ROCKIT assumes that the population ROC curve for each condition plots as a straight line on “normal-deviate”
axes, or equivalently, that the input data follow normal distributions after some unknown monotonic
transformation [20]. ROC curves measured in a broad variety of fields demonstrate this “binormal” form [27],
[28], and [29]. The assumption may be satisfied even when the raw data have multimodal and/or skewed
distributions. All this information was taken from [26].

Using the ROCKIT software the analysis was first applied independently to the datasets for group! and group 2
for each of the three radiologists. Unfortunately, this approach did not lead to the desired result of being able to
compare the diagnostic performance for the two diagnostic systems (softcopy display with and without
enhancement). The reason for that was that the analysis for, at least one group was not completed, since the data
was found to be degenerate [25]. In this case, the result of the ROC analysis would be a straight line with a
constant value for TPF, and, therefore the software aborts processing to avoid meaningless output. According to
the authors of the software, a degenerate data distribution can be found, if the number of samples is too small or
in datasets with many tied values [26].

Since the number of cases could not be increased after conducting the study, and in order to obtain more
complete results, we decided to apply the analysis to the union of data from all three radiologists. We found this
decision justified by the fact that all the three radiologists came from the same population with a similar level of
experience. Thus, their performance should be similar under the same conditions, and the data might be treated
as independent samples. Nevertheless, we are well aware that the resulting statistical significance of the results
has to be interpreted very carefully. For future ROC studies it is planned to increase the number of cases and to
encourage the radiologists to make use of the full range of possible ratings for their level of confidence, in order
to avoid such problems during the analysis of data.

For the software group 1 (with enhancement) was set as condition 1 and group 2 (without enhancement) was
considered condition 2. The analysis of the overall data was carried out in two different ways. First, the data
was regarded as unpaired (uncorrelated), since group 1 and group 2 contained different cases corresponding to
independent samples. This interpretation of the data might be the most accurate one and was given most
attention. For comparison and due to the fact that each mammographer diagnosed the same cases in group 1 and
2, the data was also analyzed as paired (correlated) data. The latter approach might be less correct, but was
included in the report for completion.

On the next pages the resulting ROC curves for data analyzed as unpaired (see Figure 13 and Figure 14) and as
paired (see Figure 15) together with their corresponding values for FPF and TPF (see Table 5 and Table 6,
respectively) are shown. Figure 13 and Figure 14 refer to the same data, Figure 13 shows both curves in one
diagram, while Figure 14 presents the curves separately. After that the most important results of ROC analysis,
the binormal parameters a, b, and the area under the ROC curve A, with their corresponding standard errors,
95% confidence intervals, and correlation of a and b are summarized for unpaired data in Table 7 and for paired
data in Table 8. Note that the 95% confidence intervals are symmetric for the binormal parameters a and b, but
asymmetric for the area index A,.

The complete output of the software ROCKIT for these two types of analysis is included in the appendix. As
mentioned before group 1 corresponds to condition 1 and was abbreviated WE (with enhancement), and group 2
corresponds to condition 2, denoted as WOE (without enhancement).
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ROC Curves for Data with and without Enhancement

—— With Enhancement

41 —s— Without Enhancement

True Positive Fraction (TPF)

0 0.5 1
False Positive Fraction (FPF)

Figure 13: ROC curves for data with condition 1 (with enhancement) and condition 2 (without enhancement) analyzed as
unpaired data (independent analysis).
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Figure 14: ROC curves for data with (a) condition 1 (with enhancement) and (b) condition 2 (without enhancement) analyzed
as unpaired data (independent analysis) in separate diagrams.

FPE TPF FPF TPF
0.005 | 0.4886 0.005 | 0.4989
0.01 | 0.5521 0.01 | 05407
0.02 | 0.6199 0.02 | 05859
0.03 | 0.6612 0.03 | 0.614
0.04 | 0.6911 0.04 | 0.6347
0.05 | 0.7145 0.05 | 0.6514
0.06 | 0.7338 0.06 | 0.6653
0.07 | 0.7501 0.07 | 0.6773
0.08 | 0.7642 0.08 | 0.6879
0.09 | 0.7767 0.09 | 0.6974
01 | 0.7878 0.1 0.7061
0.11 | 0.7979 0.11 0.714
0.12_ | 0.8071 0.12 | 0.7213
0.13 | 0.8155 0.13 | 0.7282
0.14 | 0.8232 0.14 | 0.7346
0.15 | 0.8304 0.15 | 0.7406
0.2 0.86 02 | 0.7665
025 | 0.8825 025 | 0.7874
03 | 0.9003 03 | 0.8053
04 | 09274 04 | 0.8352
05 | 0.9472 05 | 0.8602
06 | 09625 0.6 | 0.8825
07 | 0.9746 0.7 | 0.9035
0.8 | 0.9845 0.8 | 0.9244
09 | 09926 09 | 0.9475
0.95 | 0.9962 095 | 0.9619

Table 5: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for condition 1 (with enhancement) and
condition 2 (without enhancement) analyzed as unpaired data (independent analysis).
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Figure 15: ROC curves for data with condition 1 (with enhancement) and condition 2 (without enhancement) analyzed as

paired data.

EPF TPF for TPF for
Condition 1 | Condition 2
0.005 0.494 0.5036
0.01 0.5565 0.5451
0.02 0.6232 0.5898
0.03 0.6638 0.6176
0.04 0.6932 0.6381
0.05 0.7162 0.6545
0.06 0.7351 0.6683
0.07 0.7512 0.6801
0.08 0.7651 0.6906
0.09 0.7774 0.7
0.1 0.7883 0.7086
0.11 0.7982 0.7164
0.12 0.8073 0.7236
0.13 0.8155 0.7304
0.14 0.8232 0.7367
0.15 0.8303 0.7426
0.2 0.8595 0.7682
0.25 0.8817 0.7889
0.3 0.8994 0.8066
0.4 0.9263 0.8361
0.5 0.9461 0.8608
0.6 0.9614 0.8829
0.7 0.9737 0.9036
0.8 0.9838 0.9244
0.9 0.9922 0.9472
0.95 0.9959 0.9617

Table 6: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for condition 1 (with enhancement) and
condition 2 (without enhancement) analyzed as paired data.

31



70.9136

0.8405

Intervai for b

95% Conf deng

(0.8312, 0. 9615)

1 .6 1 83 0.6393

Standard Errora | Standard Errorb | Standard Error A, | Standard Error a *| . Standard Error b Standard Error A,
0.3162 0.2093 0.0325 0.2329 0.1307 0.0475

””” 5% Conﬁdenc fidence . | 95% Confidence |

al for b

0.7301, 0.9162)

(0.9986, 2.2381) " (0.2291, 1.0495) (0.6247, 1.5379)
Correlation(a, b) Correlation(a, b)
0.6544 0.4989

Table 7: Binormal parameters a, b, area under ROC curve A, with their corresponding standard errors, 95% confidence
intervals, and correlation(a, b) for condition 1 (with enhancement) and condition 2 (without enhancement) analyzed

as unpaired data (independent analysis).

_ Area under ROC
..... m Parameter b L Curve A,
1.0839 04172 0.8414
""" Standard Frror b | Standard Error A, | Standard Errora | Standard Error b | Standard Error A,
0.3137 0.2072 0.0327 0.233 0.1302 0.0474
- 95% Confidence | 95% Confidence | 95% Confidence | 95% ‘Confidence | 95% Confidence | 95% Confidence
Interval for a Interval forb. | Interval for A, ’; . Intervalfora | ‘Intervalforb | . Interval forA,
(0.9936, 2.2232) (0.2240, 1.0363) (0.8304, 0.9613) | (0.6272, 1.5407)) (0.1620, 0.6724) (0.7311, 0.9169)
" Correlation(a, b) | Correlation(a, b)
0.6506 0.4995

Correlation of A, for condition 1 and A, for condition 2: -0.0922

Table 8: Binormal parameters a, b, area under ROC curve A, with their corresponding standard errors, 95% confidence
intervals, and correlation (a, b) for condition 1 (with enhancement) and condition 2 (without enhancement) analyzed
as paired data.

As seen from both types of analysis, the values for the area under the ROC curve A, were larger for condition 1
(with enhancement) than they were for condition 2 (without enhancement). In all cases the standard error for A,
was between 0.03 and 0.05, which was rather small. Though the 95% confidence intervals for A, overlapped,
there was a clear tendency that diagnostic performance improved with enhancement in comparison with
diagnosis without enhancement. All ROC curves lay high in the unit square of FPF and TPF, which




corresponded to accurate diagnostic performances in general, but the curves for condition 1 were positioned
slightly higher (see Figure 13 and Figure 15). In general, results from data analyzed as unpaired and as paired
were very similar. The small value of —0.0922 for the correlation of A, for condition 1 and condition 2 rather
confirmed our suggestion that the data of the two conditions was unpaired.

The observed increase of the summary index A, within statistical errors encourages us to further pursue the
application of enhancement protocols for mammographic screening. We are aware of the fact that there always
are inherent sources of variability in the index A, such as a “case-sample” component due to random variations
in the difficulty of the cases included in an ROC experiment, a “between-reader” component due to random
variations in the skills of the observers participating in the experiment, and a “within-reader” component
associated with each reader’s inability to reproduce her/his diagnosis of every case on repeated readings [20]. In
addition, we were not able to analyze the data for each radiologist separately due to data degeneracy as
mentioned above. The latter has diminished the statistical significance of our results obtained from the analysis
of all data combined, since not all samples were completely independent.

Hence, for future ROC studies we plan to increase the number of cases to avoid degenerate datasets for the
analysis and to increase the statistical power of the experiment.

Aside from statistical considerations and the cautious interpretation of the results of this study we know that our
prototype test bed software tool should be further optimized. To improve the enhancement protocol the idea is
to develop feature specific enhancement protocols with different bases and associated non-linear functions for
each distinct mammographic feature, such as microcalcifications, masses, and spicular lesions. The
enhancement protocol used for this experiment, dyadic Spline wavelets with non-linear sigmoidal function, was
suggested to work best for microcalcifications according to our previous work with multiscale expansions [16],
[5]. The results of this first ROC experiment confirmed our expectations.
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D. Future Directions

As stated in previously above, one of our remaining goals is to further optimize the test bed software tool. One
aspect of this is to achieve real-time processing for the reconstruction of a selected region of interest directly
from multiscale coefficients. Our existing code can be sped up through the use of different types of filters, e.g.
filter banks for biorthogonal wavelets, where computational operations for image reconstruction are reduced to
fast multiplications.

Likewise, the choice of enhancement protocols will be expanded to a menu of feature specific enhancement
algorithms tailored for each mammographic feature, such as microcalcifications, masses, and spicular lesions. A
range of optimal choices for enhancement parameters to modify the corresponding enhancement functions will
be investigated, possibly in response to an R-01, NIH program announcement in the area of digital
mammography. Our “dream” is to present a clinical interface, where specific enhancement protocols can be
selected by a physician by only pushing a button. We envision that through such a clinical interface the
diagnostic performance of radiologists in screening can be substantially complemented and improved, both in
terms of cost and quality.

Finally, more extensive ROC studies are planned to further evaluate the benefits of contrast enhancement
through multiscale expansions for digitized and digital mammograms.

Some of these ideas have been recently proposed to the National Institute of Health (NIH) and the US Army
Breast Cancer Research Program, and we hope to be able to continue this work with their support.
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Conclusions

In the paragraphs below, we summarize the results and progress made during the final year of the project. We
identify the completion of tasks in Phase IV and Phase V investigated during this period in the Statement of
Work revised in July 1997.

The first receiver operating characteristics (ROC) study to evaluate the benefits of contrast enhancement via
overcomplete multiscale expansions of mammograms has been successfully completed. It was carried out in
collaboration with radiologists and medical physicists at Columbia Presbyterian Medical Center of Columbia
University.

In continuation of our previous work in digital mammography, an enhancement protocol using a dyadic Spline
wavelet as the basis for multiscale expansion and an associated non-linear sigmoidal enhancement function was
designed. Each digital mammogram was decomposed onto a multiscale basis to obtain coefficients at distinct
subbands. Coefficients were modified by applying a non-linear sigmoidal function. Two parameters could be
adjusted to change the enhancement. Image reconstruction from modified coefficients occurred in nearly real
time through an interactive interface running on a “PACS style” digital mammography workstation.

To enable interactive feedback via high-speed processing during the ROC study, a graphical user interface
(GUI) was designed. We called this interface the “test bed” software display tool. This display tool was
implemented in Visual C++ 6.0 and allowed to load a complete case for a mammogram. All four tradional
different views taken in mammography screening were displayed as downsampled images due to the large size
of the digitized images. A selected view was connected to a viewport displaying a region of interest (ROI) at
original resolution. The user could adjust the size of the square viewport.

The enhancement protocol was applied to the selected ROI for contrast enhancement of suspicious areas. Thus,
the wavelet enhanced images provided a means of computer-aided diagnosis to the radiologist. Processing was
limited to the ROI to achieve high speed for image reconstruction and to provide local enhancement for specific
lesions. Multiple ROI’s could be selected, processed, and the results saved.

In addition, to visualize raw data of digitized mammograms at the highest possible contrast and spatial
resolutions, 16-Bit BARCO/Metheus framebuffers together with a dual headed high-resolution MegaScan
grayscale monitor were utilized in the hardware setup. As formal members of the BARCO/Metheus Software
Developer’s Program (please see attached letter from company) we incorporated specialized software function
calls to directly access the video framebuffer for fast image display and update.

To quantify the performance of our multiscale based processing technique in terms of overall sensitivity and
specificity, an ROC study was designed and conducted with three radiologists from Columbia Presbyterian
Medical Center specialized in mammography. Each mammographer diagnosed 60 cases of mammograms in
two groups of 30 cases each according to the standard BI_RAD scale and a level of confidence (LOC) rating.
The LOC values were in the range from 1 to 5 with 5 meaning the highest confidence in positive diagnosis
(cancer) and 1 meaning the highest confidence in a negative diagnosis (normal). The usage of our enhancement
algorithm was permitted to support diagnosis for the first group, but was not included in diagnosing the second
group. Each group corresponded to a different condition of a distinct diagnostic system. Condition 1 was
considered as softcopy display with enhancement, whereas condition 2 only corresponded to softcopy display.
The study focused on dense mammograms of density 3 or 4 most difficult to asses for a physician. All cases
were carefully selected from the national mammography database of digitized radiographs from the University
of South Florida under the guidance of Dr. Suzanne Smith, Director of Breast Imaging at Columbia
Presbyterian Hospital. We purchased the entire set of nearly 3000 cases from this national database. Additional
resources, which were available to our group included a set of 300 cases of digital mammograms provided by
LORAD/Bennett and access to their full-field digital mammography system, installed in our mammography
center. The results of the ROC study were analyzed with the ROCKIT software provided by courtesy of
Professor Charles Metz, Department of Radiology, University of Chicago [26]. Conventional ROC curves were
generated and important statistical parameters determined. The area under the ROC curve A, was used as
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summary index to quantify overall specificity and sensitivity of the two diagnostic systems [20]. Unfortunately,
it was not possible to analyze datasets for each of three mammographers separately due to data degeneracy.
Nevertheless, analyzing all the data together yielded a slight increase in the area A, for diagnosis with
enhancement compared to diagnosis without. This result encourages us to further investigate the application of
multiscale methods for contrast enhancement of mammograms, though we are also aware of the limited
statistical significance of the obtained result. More extensive ROC studies with a larger number of cases are
planned to further evaluate the benefits of our processing techniques.

Aside from statistical results we received very positive feedback from the participating radiologists, who
expressed great interest in using the test bed software display tool and acknowledged a marked improvement in
image quality, when enhancement was applied.

In summary, all of the proposed tasks described in Phases IV and V of this project have been successfully
completed. The current enhancement protocol is best for the detection/enhancement of microcalcifications, and,
as stated in the body of this report, we have started to apply the brushlet functions to mammograms with
spicular lesions. Moreover, the subsection of Work in Progress under Section D in this report, suggested some
possible new directions to be spun-off by this pioneering project. We hope that these efforts will be continued
by us or other researchers, through NIH sponsor support in the near future.
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Appendix II

In this appendix we include the complete output of the ROC software ROCKIT for the data analyzed as
unpaired and as paired input.

1. Output for Data Analyzed as Unpaired Input
Condition 1 (With Enhancement = WE)

WE WOE
Date - 08-Jun-99
Time - 21:03:55

ROCKIT (Windows95 version 0.9.1 BETA):

Maximum Likelihood Estimation of a Binormal ROC Curve
from RATING Data

Original Categorical Response Data:

With category runs collapsed.

Category 1 2 3 4 5
Actually-Negative Cases 22 17 6 0 0
Actually-Positive Cases 2 7 15 16 35

Date - 08-Jun-99
Time - 21:03:55

ROCKIT (Windows95 version 0.9.1 BETA):
Enhancement on mammo, Pooled Data, with or without

Maximum Likelihood Estimation of the Parameters
a Single Binormal ROC Curve

Name of Input File being used: Pooled_ROC_Input.prn
Condition 1: WE

Total number of actually-negative cases = 45.
Total number of actually-positive cases = 45.

Data effectively collected in 5 categories.
Category 5 represents the strongest evidence of positivity.
(e.g., that the disease is present)

Response Data:

Category 1 2 3 4 5
Actually-Negative Cases 22 17 6 0 0
Actually-Positive Cases 2 7 15 16 5
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Operating Points Corresponding to the Input Data:

FPF: .000 .000 .000 .133 .511 1.000
TPF: .000 .111 .467 .800 .956 1.000

Tnitial Estimates of the Binormal ROC Parameters:

N

a= 1.7949
b= 1.0319
z(k) = -.002 -1.005 -1.917 -2.936

Procedure Converges after 7 Iterations

Final Estimates of the Binormal ROC Parameters

Binormal Parameters and Area Under the Estimated ROC:
a = 1.6183
b = .6393
Area (Az) = 9136

1: z(k) = -.037 1.153 2.676 4.448

Estimated Standard Errors and Correlation of these Values:
Std. Err. (a) = .3162

Std. Err. (b) = .2093
Corr(ab) = .6544
Std. Err. (Az)= .0325

Symmetric 95% Confidence Intervals
Fora: ( .9986,2.2381)
Forb: ( .2291, 1.0495)

Asymmetric 95% Confidence Interval
For Az: ( .8312, .9615)

Variance-Covariance Matrix:

a b z2(1)  z(2) z(3) z(4)
a  .1000

b .0433 .0438

2(1) .0206 .0074 .0347

z(2) 0177 -0101 .0174 .0527

2(3) -.0429 -.1047 .0014 .0684 .3824

2(4) -.1539 -2314 -0193 .0969 .6667 1.4668
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Correlation Matrix:

a

b

a 1.0000

b .6544 1.0000

z( 1)

z(1) .3499 .1906 1.0000

z(2) 2438 -2092 .4066 1.0000

z(2) z(3) «4)

z(3) -2194 -8088 .0125 .4813 1.0000
z(4) .0000 .0000 .0000 .0000 .0000 .0000

Estimated Binormal ROC curve, with Lower and Upper
Bounds of the Asymmetric Point-wise 95% Confidence
Interval for True-Positive Fraction at a Variety

of False-Positive Fractions:

FPF

.005
010
.020
.030
.040
.050
.060
.070
.080
.090
.100
110
120
130
.140
150
200
250
300
400
.500
.600
.700
.800
.900
950

TPF

4886
5521
6199
.6612
6911
7145
7338
7501
7642
7767
7878
1979
.8071
8155
.8232
.8304
.8600
.8825
.9003
9274
9472
9625
9746
9845
9926
9962

(Lower Bound, Upper Bound)

NS PPN N N PN PN PN N NN NN NN NN AN N

2030
2773
3686
4290
4743
5104
.5403
5656
5875
6067
6237
.6389
6526
.6650
6764
.6868
7284
7585
7816
8157
.8410
.8617
.8802
.8982
9185
9322

3

2
2
9
b
2
b
2
2
b
2
5
S
2
b
b
2
b
b
b
3
b
b
b
H
2

.7804
.8031
.8279
.8438
.8559
.8659
8744
.8818
.8885
.8946
.9002
9054
9102
9147
9189
9229
.9398
9529
9632
9780
9874
.9933
9968
.9988
9997
9999

vvvvvvvvvvvvvvvvvvvvvvvvvv
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Estimates of Expected Operating Points on fitted ROC
curve, with lower and upper bounds of asymmetric 95%
confidence interval along the curve for those points:

Expected operating point Lower bound Upper bound
( FPF, TPF) ( FPF, TPF) ( FPF, TPF)

(.0037, .4633) (0.0000, .0537) (3814, .9230)
(.1245, .8109) (.0090, .5424) (5235, .9511)
(5147, .9497) (3397, 9122) (.6869, .9732)
(.5000, .9472) ( 3575, 9170) (.6425, .9680)

Date - 08-Jun-99
Time - 21:03:55
Condition 2 (Without Enhancement = WOE)
Date - 08-Jun-99
Time - 21:04:30
ROCKIT (Windows95 version 0.9.1 BETA):
Maximum Likelihood Estimation of a Binormal ROC Curve
from RATING Data
Original Categorical Response Data:
With category runs collapsed.
Category 1 2

3 4
Actually-Negative Cases 18 21 6 0
Actually-Positive Cases 5 8 10 16

o =N

Date - 08-Jun-99
Time - 21:04:30

ROCKIT (Windows95 version 0.9.1 BETA):
Enhancement on mammo, Pooled Data, with or without

Maximum Likelihood Estimation of the Parameters
a Single Binormal ROC Curve
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Name of Input File being used: Pooled_ROC_Input.pm
Condition 1: WOE

Total number of actually-negative cases = 45.
Total number of actually-positive cases = 43.

Data effectively collected in 5 categories.

Category 5 represents the strongest evidence of positivity.

(e.g., that the disease is present)

Response Data:

Category 1 2 3 4 5
Actually-Negative Cases 18 21 6 0 0
Actually-Positive Cases 5 8 10 16 6

Operating Points Corresponding to the Input Data:

FPF: .000 .000 .000 .133 .600 1.000
TPF: .000 .133 .489 .711 .889 1.000

Initial Estimates of the Binormal ROC Parameters:

a= 1.1537
b= .7188

2k)= 217 -.994 -1.864 -3.163

Procedure Converges after 7 Iterations

Final Estimates of the Binormal ROC Parameters

Binormal Parameters and Area Under the Estimated ROC:
a = 1.0813
b = 4208
Area (Az) = .8405

1: z(k) = -.263 1.152 2.656 5.219

Estimated Standard Errors and Correlation of these Values:
Std. Err. (a) = .2329
Std. Err. (b) = .1307
Corr(a,b) = .4989
Std. Err. (Az)= .0475

Symmetric 95% Confidence Intervals
Fora: ( .6247,1.5379)
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Forb:  ( .1647, .6770)

Asymmetric 95% Confidence Interval
For Az: ( .7301, .9162)

Variance-Covariance Matrix:

a b z2(1) z(2) z(3) z(4)
a 0543
b 0152 .0171
z(1) .0130 .0050 .0356
z(2) .0108 -.0066 .0149 .0533
z(3) -.0072 -.0583 -.0003 .0654 .3663
z(4) -.2338 -.4003 -.0503 .2036 1.3801 3.5527

Correlation Matrix:

a bzl z(2) z(3) z(4
a 1.0000
b .4989 1.0000
z(1) .2955 .2032 1.0000
z(2) .2005 -.2193 .3413 1.0000
z(3) -.0510 -.7365 -.0025 .4681 1.0000
z(4) .0000 .0000 .0000 .0000 .0000 .0000

Estimated Binormal ROC curve, with Lower and Upper
Bounds of the Asymmetric Point-wise 95% Confidence
Interval for True-Positive Fraction at a Variety

of False-Positive Fractions:

48




FPF

005
.010
.020
.030
.040
.050
.060
.070
.080
.090
100
110
120
130
.140
150
200
250
300
400
.500
.600
.700
.800
.900
950

TPF

4989
.5407
5859
.6140
6347
6514
.6653
6773
.6879
6974
7061
7140
7213
7282
7346
7406
7665
1874
.8053
.8352
.8602
.8825
.9035
9244
9475
9619

(Lower Bound, Upper Bound)

PN N PN PN PN N PPN LN PN PN SN PN PN TN SN SN NN SN NN NN N

2780, .7201 )
3306, .7398 )
3902 , 7619 )
4284 , 7763 )
4567 , 7874 )
4794 , 7966 )
4984 , 8045 )
5147 , 8115 )
5290 , .8178 )
5417, .8236 )
5532, .8290 )
5636, .8340 )
5732, 8387 )
5820 , .8432 )
5902 , .8474 )
5978 , 8514 )
6298 , .8693 )
6547 , 8844 )
6752, 8975 )
7078 , 9197 )
7339, 9380 )
7567 , 9535 )
7780 , 9670 )
7999 , 9788 )
8259 , 9894 )
8446 | .9944 )

Estimates of Expected Operating Points on fitted ROC
curve, with lower and upper bounds of asymmetric 95%
confidence interval along the curve for those points:

Expected operating point

( FPF,

(.0040,
(.1247,
(.6039,
( .5000,

TPF )

4856)
7246)
8834)
.8602)

Lower bound Upper bound
( FPF, TPF) ( FPF, TPF)

(0.0000, .0558)  ( .8506, .9355)
(.0097, .5388) (.5138, .8634)
(4250, .8418) (.7629, .9166)
(3558, .8227) (.6442, .8919)

Date - 08-Jun-99
Time - 21:04:30
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2. Output for Data Analyzed as Paired Input

Output for the analysis of data for both, condition 1 and 2, was written to one file in this case.

Condition 1 (With Enhancement = WE), Condition 2 (Without Enhancement = WOE) Analyzing file comparing
datasets 1 & 2

Date - 08-Jun-99
Time - 20:57:23

ROCKIT (Windows95 version 0.9.1 BETA):
Maximum Likelihood Estimation of a Binormal ROC Curve
from RATING Data
for condition 1 : WE
Original Categorical Response Data:
With category runs collapsed.
Category 1 2 3 4 5
Actually-Negative Cases 22 17 6 0 0
Actually-Positive Cases 2 7 15 16 5
from RATING Data
for condition 2 : WOE
Original Categorical Response Data:
With category runs collapsed.
Category 1 2 3 4 5
Actually-Negative Cases 18 21 6 0 0
Actually-Positive Cases 5 8 10 16 6
Date - 08-Jun-99
Time - 20:57:26
ROCKIT (Windows95 version 0.9.1 BETA):
Enhancement on mammo, Pooled Data, with or without
Maximum Likelihood Estimation of the Parameters
of the Bivariate Binormal Model for PAIRED Data
and

the Calculation of the Statistical Significance of
the Difference between Binormal ROC Curve Estimates.
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Statistical Test to be Employed:
Area (Az) test

Name of Input File being used: Pooled_ROC_Input.prn

Condition 1: WE

Data effectively collected in 5 categories.
Category 5 represents the strongest evidence of positivity.
(e.g., that the disease is present)

Condition 2: WOE

Data effectively collected in 5 categories.

Category 5 represents the strongest evidence of positivity.

(e.g., that the disease is present)

Total number of correlated actually-negative cases = 43.

Total number of correlated actually-positive cases = 45.

Rating-Data Matrix for Actually-Negative cases:
Condition 1 Ratings

Condition 1 2 3 4 5
2 Ratings

0 0 0
0 0 0
0 0 6
5 0 2
1 01

— N W A
oVUuo o
hm—o o
coooo

1
8
suml 22 17 6 0 0 45

Rating-Data Matrix for Actually-Positive cases:

Condition 1 Ratings
Condition 1 2 3 4 5

2 Ratings
5 1 13106
4 0 210 3 1 16
3 1 2 04 310
2 011518
1 01 13 05

suml 2 7 15 16 5 45
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Operating Points Corresponding to the Input Data:

For Condition 1:
FPF: .000 .000 .000 .133 .5111.000
TPF: .000 .111 .467 .800 .956 1.000

Operating Points Corresponding to the Input Data:

For Condition 2:
FPF: .000 .000 .000 .133 .600 1.000
TPF: .000 .133 .489 .711 .889 1.000

Initial Estimates of the Binormal ROC Parameters:

For Condition 1: WE

a= 1.7949
b= 1.0319

z(k) = -.002 -1.005 -1.917 -2.936

Initial Estimates of the Binormal ROC Parameters:

For Condition 2: WOE

a= 1.1537
b= .7188

z(k)= 217 -.994 -1.864 -3.163

Procedure Converges after 4 Iterations
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Final Estimates of the Binormal ROC Parameters
and the Inter-Condition Correlation Coefficients:

Condition 1:

Condition 2:
WE WOE
Binormal Parameters and Area Under the Estimated ROC :
a = 1.6084 1.0839
b = 6302 4172
Area (Az) = 9132 .8414

*** Wilcoxon area estimates are computed for continuous data only.

1: z(k)= -.036 1.151 2.693 4.510
2:z(k)= -256 1.144 2.658 5.289

Estimated Standard Errors and Correlation of these Values:

Std. Err. (a) = 3137 2330
Std. Err. (b) = 2072 1302
Corr(ah) = .6506 4995
Std. Err. (Az)=  .0327 0474

*** Wilcoxon area estimates are computed for continuous data only.

Symmetric 95% Confidence Intervals

Fora:  ( .9936,2.2232) ( .6272,1.5407)
Forb:  ( .2240,1.0363) ( .1620, .6724)

Asymmetric 95% Confidence Interval

ForAz:  ( .8304, .9613) ( 7311, .9169)

Inter-Condition Decision Variable Correlation Estimates:

Effective Correlation of the Test Results Between Conditions:
For Actually-Negative Cases (Rn) = .1301

For Actually-Positive Cases (Rs) = -.2980
Estimated Standard Errors of the Inter-Condition

Correlation Coefficients:

Std. Error of Rn (for Actually-Negative Cases)= .1887
Std. Error of Rs (for Actually-Positive Cases)= .1511

Correlation of Area(1) and Area(2) = -.0922
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Statistical Significance of the Difference between the Two
*CORRELATED* ROC Curve Estimates According to the Selected Test:

e ke s s st s s e e e ok s s o st sk s s skesfe st s st s e e ke s st s sk e seode s st sk sk sk s st st sk skeskeske sk stk skt kol skok

The computed *CORRELATED* Area test statistic
has a value of = 1.1959

with corresponding two-tailed p-value = .2317
and corresponding one-tailed p-value = .1159.

Approximate 95% Confidence Interval for the Difference:
(-.0459, .1894)

ax
bx
ay
by
IS
m

Variance-Covariance Matrix:

ax bx ay by 1 m zx(1) zx(2) zx(3) zx(4) zy(1) zy(2) zy( 3) zy(4)

.0984

0423 .0429

-.0041 .0007 .0543

.0006 .0003 .0152 .0169

0050 .0020 .0035 .0014 .0228

.0001 .0011 0.0000 .0007 0.0000 .0356

zx( 1) .0203 .0073 .0012 0.0000 0.0000 .0003 .0347
zx(2) .0173 -.0100 .0012 -.0001 0.0000 -.0018 .0174
zx( 3) -.0433 -.1057 .0012 -.0002 -.0001 -.0044 .0012
zx( 4) -.1555 -2346 .0013 -.0002 -.0004 -.0075 -.0201
zy( 1) .0018 0.0000 .0129 .0050 0.0000 .0005 .0029
zy(2) .0018 -.0001 .0107 -.0065 0.0000 -.0017 .0029
zy(3) .0018 -.0003 -.0074 -.0584 0.0000 -.0041 .0028
zy(4) .0022 -.0003 -.0824 -.1717 -.0008 -.0084 .0028

2.1640

ax

ax
bx
ay
by
IS

m

0527
0689
.0985
.0028
.0031
.0035
.0041

3948
6931
.0027
.0035
.0043
.0055

1.5328

0026 .0355
.0039 .0150
.0051 -.0002
0056 -.0317

ax bx ay by rs m zx(1) zx(2) zx(3) zx(4) zy(1) zy(2)

Correlation Matrix:

.0529

0648 3701

1065 .7299

zy(3) zy(4)

bx ay by s m zx(1) zx(2) zx(3) zx(4) zy(1) zy(2) zy(3) zy(4)

1.0000

.6506 1.0000

-.0565 .0139 1.0000

0155 .0106 .4995 1.0000

1061 .0641 .0999 .0706 1.0000

.0018 .0273 .0011 .0272 0.0000 1.0000

zx('1) .3481 .1900 .0278 .0004 -.0001 .0074 1.0000
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zx(2) 2408 -2106 .0224 -.0032 .0003 -.0415 .4074 1.0000
7x(3)-2199 -.8117 .0083 -.0024 -.0008 -.0370 .0105 .4775 1.0000
zx(4) -.4005 -.9142 .0044 -.0013 -.0020 -.0320 -.0871 .3466 .8910 1.0000

zy( 1) .0309 .0010

2933 2020 0.0000 .0146 .0824 .0653 .0230 .0112 1.0000

zy(2) .0250 -.0030 .1991 -.2157 0.0000 -.0395 .0670 .0593 0241 .0137 .3455 1.0000
zy(3) .0097 -.0024 -.0525 -.7372 0.0000 -.0361 .0250 .0249 .0113 .0068 -.0021 .4628 1.0000
zy(4) .0049 -.0010 -.2405 -.8965 -.0036 -.0301 .0101 .0121 0059 .0031 -.1145 .3148 .8156

1.0000

ax bx

For condition 1 : WE

ay

by 1 m zx(1) zx(2) zx(3) zx(4) zy(1) zy(2) zy( 3) zy(4)

Estimated Binormal ROC curve, with Lower and Upper
Bounds of the Asymmetric Point-wise 95% Confidence
Interval for True-Positive Fraction at a Variety

of False-Positive Fractions:

FPF

.005
.010
.020
.030
.040
.050
.060
.070
.080
.090
.100
110
120
130
.140
150
200
250
300
400
.500
.600
.700
.800
.900
.950

TPF

4940
5565
6232
6638
6932
7162
7351
7512
7651
JT774
.7883
.7982
.8073
8155
.8232
.8303
.8595
.8817
.8994
9263
9461
9614
9737
9838
9922
.9959

(Lower Bound, Upper Bound)

( 2083, .7830 )
( 2825, .8051 )
( 3731, .8293 )
( 4328, .8449 )
( 4776 , .8568 )
( 5132, 8665 )
( 5427, 8748 )
( 5677, .8822 )
( 5893, .8888 )
(6082, .8947 )
(6249 , 9002 )
( 6399 , .9053 )
( 6535, 9101 )
(6657, 9145 )
( 6769 , 9187 )
( 6872, 9226 )
( 7283, .9393 )
( 7580 , 9523 )
( 7809 , .9626 )
( 8147, 9774 )
( 8398, .9869 )
( 8603, .9929 )
( 8786, .9966 )
( 8966 , .9987 )
( 9168, .9997 )
( 9305, .9999 )
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Estimates of Expected Operating Points on fitted ROC
curve, with lower and upper bounds of asymmetric 95%
confidence interval along the curve for those points:

Expected operating point

( FPF,

(.0035,
(.1249,
(5142,
(5000,

TPF)

4646)
8115)
.9485)
9461)

For condition 2 : WOE

( FPF, TPF)

(0.0000, .0528)
(.0086, .5427)
(13393, 9111) (.6864, .9722)
(3575, .9159)

Lower bound

Upper bound

( FPF, TPF)

(3949, .9251)
(.5323, .9515)

(6425, .9670)

Estimated Binormal ROC curve, with Lower and Upper

Bounds of the Asymmetric Point-wise 95% Confidence

Interval for True-Positive Fraction at a Variety

of False-Positive Fractions:

FPF

.005
.010
.020
.030
.040
.050
.060
.070
.080
.090
.100
110
120
130
.140
150
.200
250
.300
400
500
.600
.700
.800
900
950

TPF

5036
5451
.5898
6176
.6381
.6545
.6683
.6801
.6906
.7000
.7086
7164
7236
7304
1367
7426
.7682
7889
.8066
.8361
.8608
.8829
9036
.9244
9472
9617

(Lower Bound, Upper Bound)

PN P P N N PN PN PN N PN N TN SN LN LN SN NN NN SN SN

2828
3352
.3946
4325
4607
4832
5020
5181
5323
.5449
5562
5665
5760
5847
5928
.6003
.6319
6565
6767
.7089
7347
1572
7783
7999
.8256
.8440

7234
7428
7646
7788
1897
7988
.8066
8135
.8197
.8254
.8307
.8357
.8403
.8447
.8489
.8529
.8705
.8854
.8983
9202
9383
9537
9670
9788
.9893
9943

e’ N N N’ N N S N N N N N N S S N N N N N S N N N S N
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Estimates of Expected Operating Points on fitted ROC
curve, with lower and upper bounds of asymmetric 95%
confidence interval along the curve for those points:

Expected operating point Lower bound Upper bound
( FPF, TPF) ( FPF, TPF) ( FPF, TPF)

(.0039, .4900) (0.0000, .1498) (4084, .8382)
(.1264, .7280) (.0088, .5370) (5350, .8688)
(.6012, .8832) (.4233, .8421) (.7600, .9160)
(.5000, .8608) (3575, .8242) (.6425, .8918)

Plots’ of the Fitted Binormal ROC Curves:

*********************************************************

FPF TPF for TPF for
Condition 1 Condition 2

005 .4940 5036
010  .5565 5451
020 .6232 .5898
030  .6638 6176
040  .6932 .6381
050 7162 .6545
060 7351 6683
070 7512 .6801
080 7651 6906
090 7774 .7000
100 .7883 .7086
110 7982 7164
120 .8073 7236
130 8155 7304
140 .8232 1367
150 .8303 7426
200  .8595 7682
250  .8817 7889
300  .8994 .8066
400 9263 .8361
500 9461 .8608
600 9614 .8829
700 9737 9036
.800  .9838 .9244
900 9922 9472
950 9959 9617
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